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In this work, MacConaill’s classification that the articular surface
of the femoral head is better represented by ovoidal shapes rather
than purely spherical shapes is computationally tested. To test
MacConaill’s classification, a surface fitting framework was
developed to fit spheres, ellipsoids, superellipsoids, ovoids, and
superovoids to computed tomography (CT) data of the femoral
proximal epiphysis. The framework includes several image proc-
essing and computational geometry techniques, such as active
contour segmentation and mesh smoothing, where implicit surface
fitting is performed with genetic algorithms. By comparing
the surface fitting error statistics, the results indicate that
(super)ovoids fit femoral articular surfaces better than spherical
or (super)ellipsoidal shapes. [DOI: 10.1115/1.4031650]
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1 Introduction

For spheroidal articular surfaces, such as the humeral and femo-
ral heads, the standard classification regarding shape modeling is
that these surfaces can be represented by spherical shapes [1–3].
Despite this classification, several authors within the orthopedic
surgery and prosthetic design communities have noted that the
femoral head and acetabular cavity are not clearly spherical,
but are actually more complex in shape exhibiting quasi-
homogeneous curvatures [4–16]. Most of these studies use spheres
and ellipsoids to describe the shapes [4–11], although some con-
sider conchoids [4,7,15].

Contrary to these shape classifications, MacConaill and
coworker provided a series of anatomical observations which led
to a more complex classification based on joint morphology: sphe-
roidal articular surfaces such as the femoral head are better repre-
sented by ovoidal (i.e., egglike) forms rather than spherical since
a sphere does not account for more global characteristics such as
axial asymmetry and nonhomogeneous curvature [17–19]. How-
ever, there have not been computational studies to test MacCo-
naill’s ovoidal classification regarding the femoral head. Thus, by
using surface fitting tools that consider ovoidal shapes as geomet-
ric primitives, it is expected that ovoidal shapes will provide bet-
ter approximations of the global characteristics of the femoral
head and, consequently, will lead to a better understanding and
treatment of many degenerative joint diseases [4], reduce the
overall time of the surgical operation, and inspire new joint pros-
thetic designs [7,17–19].

Therefore, the objective of this study was to perform a shape
analysis of the femoral head in order to computationally test Mac-
Conaill’s ovoidal joint classification. To this end, a computational
framework for fitting implicit surface models was developed using
spheres, (super)ellipsoids [20], and (super)ovoids [21] as the geo-
metric primitives to describe the articular surfaces. The implicit
surface fitting tool extracts global aspects that reflect joint
morphology of spheroidal articular surfaces from CT data sets of
the hip region. A comparative study was then performed between
the geometric primitives to identify which primitive provides a
more precise mathematical description of the morphofunctional
aspects of the spheroidal articular surface. The surface fitting
framework uses genetic algorithms to solve a least-square
minimization problem to compare how well the geometric primi-
tives approximate the anatomical data from the CT images.
Thus, the higher the goodness-of-fit the better a geometric primi-
tive describes, macroscopically, the articular surface of a femo-
ral head. It should be noted that the suitability of ovoidal shapes
to represent the femoral head has been provided by MacConaill
and coworker [17–19]. However, no study has used a computa-
tional approach to fit a superellipsoid or (super)ovoid to the fem-
oral articular surface to explicitly test the MacConaill
classification.

2 Methodology

2.1 Geometric Primitives or Shape Models. The considered
shape models are idealized geometries with geometric characteris-
tics that match macroscopic features of spheroidal articular surfa-
ces such as: convexity, C2 continuity, spherelike topology, and
their ability to represent limited and closed surfaces. In the case of
superellipsoids, they consist of a generalization of spherical and
ellipsoidal surfaces proposed by Barr [20] by replacing the fixed
exponent by an arbitrary non-negative number equal to or larger
than 2. In the case of superovoids, they consist of a generalization
of an ovoidal form proposed by Todd and Smart [21] after replac-
ing the fixed quadratic exponent by an arbitrary non-negative
number greater than 2. The implicit surface expressions for a
superellipsoid (FSQ) and superovoid (FSO) in the canonical form
are written as

FSQðxl; yl; zlÞ ¼ 1() x
c1

l þ y
c2

l þ z
c3

l ¼ 1 (1)
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FSO xl;yl; zlð Þ ¼ 1()
x
c1

l

c0x þ c1xzl þ c2xz2
l þ c3xz3

l

� �c1
þ y

c2

l

c0y þ c1yzl þ c2yz2
l þ c3yz3

l

� �c2

þ z
c3

l ¼ 1 (2)

where xl, yl, and zl � R are the local coordinates of the point in
space that belongs to the surface; c1, c2, and c3 � Rþ \{0} are real
non-negative exponents; and c0x, c1x, c2x, c3x, c0y, c1y, c2y, and c3y

are the ovoidal shape coefficients.
The values of c1, c2, and c3 are bounded between 2 and less

than infinity so that only smooth convex shapes are modeled. The
ovoidal shape coefficients are bounded between 0� c0x, c1x, c0y,
c1y� 1 and �0.1� c2x, c3x, c2y, c3y� 0.1. By varying the exponent
values, the surface shape is mediated between spherical and rec-
tangular shapes (Fig. 1).

Affine transformations are applied to the unit shape model,
described by Eqs. (1) and (2), by converting local coordinates, xl,
to global coordinates, xg, by an affine matrix transformation that
incorporates a scaling matrix, D, that contains shape coefficients
and dimension parameters (e.g., in millimeters) a, b, and c along
the xl, yl, and zl directions, a rotation matrix, R, and a translation
column vector, t, as

xl ¼ ½ xl yl zl 1 �T ¼ RD t

01�3 1

� �� ��1

xg (3)

where xl and xg are written in homogeneous coordinates.

2.2 Three-Dimensional Reconstruction of Articular
Surfaces of Synovial Joints. In order to computationally test the
ovoidal classification on spheroidal articular surfaces, a computa-
tional framework was developed (Fig. 2) [22–25]. The framework
takes as input a collection of CT image data sets of the hip region
free from considerable noise or artifacts [26]. None of the subjects
scanned revealed a visible hip joint pathology. The image spatial re-
solution was close to 10�1 mm3, which reveals both global and local
details. Hip image sets of 11 subjects with ages between 21 and 39 yr
(27.5 6 5.6 years, 5 males and 6 females) were analyzed: Ten multi-
detector CT scans of the entire pelvis and both femurs (512� 512 ac-
quisition matrix, in-plane x and y resolutions¼ 0.2155–0.2637 mm,
slice thickness¼ 0.70–1.0 mm, and 241–357 slices) are available
from the Musculoskeletal Research Laboratories at the University of
Utah.2 In addition, a single hip image set (512� 512 acquisition
matrix, in-plane resolution¼ 0.664� 0.664 mm, slice thick-
ness¼ 1.5 mm, and 356 slices) was scanned using a Philips MX
8000 IDT 16 (Philips Medical Systems, Eindhoven, The Nether-
lands) and can be found in OsiriX’s DICOM sample image sets
website (the PELVIX case [27]).3 Consent for the use of the CT
data sets was provided by the subjects.

After applying a global threshold to the images, the bone
regions were segmented with 3D active contours and all segmen-
tation errors were manually corrected. Three-dimensional triangu-
lar surface meshes of the femoral heads are generated from the
segmented data with a marching cubes algorithm [28]. Since this
mesh presents undesired scanning features, primarily a zigzagged
artifact, mesh filtering was carried out with a Laplacian filter.
From the reconstructed 3D meshes, the articular surfaces were
manually delimited based on anatomical knowledge of bone
topography by identifying smooth regions exhibiting closely
homogenous curvature. After deleting the edges and faces of this
triangular mesh, the mesh vertices were then converted to a point
cloud. Since the obtained point clouds are dense (on the order of
tens of thousands of points), only a few thousand points are
needed for surface fitting. Thus, Gaussian sampling [29], which is
a down sampling procedure, is performed so that a homogeneous
and representative set of points is obtained for the femoral articu-
lar surfaces (1216.7 6 219.4 points). For a more detailed descrip-
tion of the framework for 3D reconstruction of anatomical
structures, see Refs. [30,31].

2.3 Surface Fitting With Genetic Algorithms and Error
Analyses. Fitting an implicit surface to a cloud of points was for-
malized as a nonlinear optimization problem with simple bound-
ary constraints [7] as follows: given a set of N points in Cartesian
space, P¼ {xi: xi � R3, i¼ 1,…, N}, N � N, which belongs to the
outer cortical bone surface of spheroidal joints, determine the vec-
tor of geometric parameters, k � RM, where M � N is the number
of geometric modeling parameters (Table 1) that minimizes the
error-of-fit objective function, EOF(k), defined as the square sum
of residuals (f), where each residual is the difference between the
shape model function and the corresponding point datum as

min
k

EOFðkÞ ¼ min
k

XN

i¼1

f 2
i ðxg; yg; zg; kÞ

¼ min
k

XN

i¼1

ð1� Fiðxg; yg; zg; kÞÞ2 (4)

subjected to

l � k � u (5)

where l, u � RM are lower and upper bound column vectors,
respectively, that delimit the admissible set of the solution space,
and F is the implicit surface representation presented by Eqs. (1)
and (2). Note that vector k contains the global anatomical infor-
mation which includes the rotation and translation parameters
used in the affine transformations, curvature, and asymmetry,
where the latter applies only for ovoids.

The admissible set, X � RM, or surface parameter space can be
expressed as the following compact set (i.e., limited and closed
set hypercube):

Fig. 1 Unit-sized superellipsoids and superovoids for varying exponent values

2http://mrl.sci.utah.edu/software/hip-data/
3http://www.osirix-viewer.com/datasets/
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k 2 X ¼ [
M

k¼1
Ik ¼ ½a0; a1� � ½b0; b1� � ½c0; c1� � :::� ½/0;/1�

� ½h0; h1� � ½w0;w1� � RM (6)

where Ik is a real-valued interval of the kth surface parameter,
{0,1} subscript indices designate the start and end value of the kth

interval, and M¼ 9,12,17,20 is the total number of surface param-
eters for the ellipsoid, superellipsoid, ovoid, and superovoid mod-
els, respectively. As for spheroidal surfaces, the shape parameters
must be constrained, where the values for a, b, and c are all posi-
tive, and c1, c2, and c3 are confined to be greater than or equal to 2
and lesser than infinity. The nonlinearity of each objective func-
tion and the presence of a large number of local minima require

Fig. 2 Computational framework for information extraction and geometric modeling of spheroidal articular surfaces. An
implicit shape model is fitted to medical image data, thus providing quantitative information regarding global geometric
characteristics. File formats and software tools are shown. The software versions used are ITK-SNAP 2.2.0, PARAVIEW 3.10.1,
BLENDER 2.43, and MATLAB

VR

R2009b.
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the use of metaheuristic methods, such as genetic algorithms, to
numerically solve the minimization problem. The Genetic Algo-
rithm and Direct Search ToolboxTM from MATLAB

VR

is used for
implementing the surface fitting code running on an Intel

VR

Core 2
Duo processor 1.66 GHz and 2 GB of RAM.

To calculate the surface fitting error to compare the goodness-
of-fit between the different geometric primitives, it is necessary to
calculate the minimum Euclidean distances from each point of the
point cloud to the fitted surface. Note that the residual value f
defined by Eq. (4) is not equal to the physical distance except for
the spherical case, hence it is a pseudo-Euclidean distance.
Unfortunately, the exact geometric distance from a point to an
arbitrary (super)ellipsoid or (super)ovoid surface cannot be
expressed analytically. Here, the minimum distance between each
point of the point cloud and the optimally fitted geometric primi-
tive is calculated by taking the signed Euclidean distance,
SED(xQ), as

min
xQ

SEDðxQ; xPÞ ¼ min
xQ

signðFðxPÞÞkxP � xQk2 ¼ min
xQ

kdPQk2

(7)

subjected to the nonlinear equality constraint

FðxQ; k�Þ ¼ 1 (8)

with xQ being contained in the vicinity of xP

xP � e � xQ � xP þ e (9)

where xQ � R3 is the surface point with minimum distance, xP �
P is the given point from the point cloud, which can be inside, out-
side, or upon the fitted surface, dPQ � R3 is the distance vector
between the given point P and the iterated point Q, F is the
implicit surface representation given by Eqs. (1) and (2), sign(.)
is the sign function, k* is the vector of geometric parameters of
the optimally fitted surface, and e is a tolerance vector (e.g.,
e¼ e[1 1 1]T). Here, e is considered to be much smaller compara-
tively to the axial dimensions of the surface, e¼ 3.0 mm. In this
case, the admissible set is given by the set of points contained in a
cubic box, 2e wide, and that satisfies the nonlinear equality con-
straint defined by the zero-set implicit surface functions of
Eqs. (1) and (2). The same genetic algorithm code (MATLAB

VR

opti-
mization toolbox) was used to solve this optimization problem.

The CT images of the five male and six female normal hip
joints were considered to analyze the shape of the femoral head.
The goodness-of-fit was determined by measuring the surface fit-
ting errors or, in other words, the signed Euclidean distance
between the scanned points and the idealized surface shape. The
surface fitting errors were then analyzed in two ways: (i) a qualita-
tive analysis by visual inspection that relies on the graphical rep-
resentation of the point cloud and the encountered surface
solution and (ii) a quantitative analysis based on the values of the
surface fitting errors measured as the signed Euclidean distances
and associated statistics.

3 Results

By visual inspection, all fitted shape models approximated quite
well the global features of the articular surfaces of the femoral
heads, although nonspherical shapes presented a better anatomical
fit (Fig. 3). From this qualitative analysis, it is also clear that the
spherical shape have more concentrated areas of points with
greater fitting errors relative to the remaining shapes.

Consistent with the qualitative analysis, the quantitative analy-
sis of the surface fitting errors indicated that the bone–cartilage
boundary of the femoral heads closely resembled the idealized
geometric primitives, as the error metrics were very small (i.e., on
the order of 10�1 mm). Tables 2 and 3 show the surface fitting
errors and surface fitting parameters, respectively.

The mean fitting errors (Table 2) were smaller for the ovoid
and superovoid shapes, where the largest difference of 0.159 mm

lies between the sphere and ovoid. Both ellipsoid and superellip-
soid mean fitting errors were similar, with the ellipsoid shape
being 0.012 mm larger. The mean fitting errors between ovoid and
superovoid were also very similar but 0.008 mm larger for the
superovoid. The statistical analyses (paired t test) showed that the
differences between fitting errors of the sphere and all other
shapes were significant (p< 0.05). The ovoid and ellipsoid also
presented a significant difference (p¼ 0.011). As for the differen-
ces between surface fitting errors for the 11 specimens of the ellip-
soid and superellipsoid (p¼ 0.069), ellipsoid and superovoid
(p¼ 0.177), superellipsoid and ovoid (p¼ 0.402), superellipsoid
and superovoid (p¼ 0.759), and finally ovoid and superovoid
(p¼ 0.208) were nonsignificant.

Fig. 3 Three-dimensional views of the optimally fitted surfaces
of a femoral head illustrating that the geometric primitives fit
the data in a global fashion. Data points are represented based
on the minimal signed Euclidean distances (in millimeter) cal-
culated between each point and the idealized geometric
primitive.
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Table 1 Vector of shape parameters for the sphere (S), ellipsoid (E), superellipsoid (SE), ovoid (O), and superovoid (SO) shape
models and corresponding number of geometric modeling degrees-of-freedom, M

Shape model K M

S kS¼ [a,t1,t2,t3]T 4
E kE¼ [a,b,c,t1,t2,t3,/,h,w]T 9
SE kSE¼ [a,b,c,c1,c2,c3,t1,t2,t3,/,h,w]T 12
O kO¼ [a,b,c,c0x,c1x,c2x,c3x,c0y,c1y,c2y,c3y,t1,t2,t3,/,h,w]T 17
SO kSO¼ [a,b,c,c1,c2,c3,c0x,c1x,c2x,c3x,c0y,c1y,c2y,c3y,t1,t2,t3, /,h,w]T 20

Table 2 Surface fitting error statistics (in millimeter) for each geometric primitive for each femoral head. The total number of
points (N) for each subject is also indicated. The mean (l) and standard deviation (r) are calculated for the absolute value of the
surface error, ||dPQ||2 (S—sphere; E—ellipsoid; SE—superellipsoid; O—ovoid; and SO—superovoid).

Subject Gender Age Side N S E SE O SO

1 F 31 L 1265 l 0.595 0.596 0.533 0.521 0.517
r 0.472 0.479 0.459 0.461 0.461
Min �2.51 �2.478 �2.555 �2.604 �2.088
Max �4.0� 10�5 2.220 2.056 2.275 2.358

2 M 28 R 1506 l 0.580 0.584 0.569 0.527 0.535
r 0.508 0.500 0.518 0.494 0.489
Min �3.464 �2.616 �2.351 �2.469 �2.260
Max �2.0� 10�5 3.462 3.463 3.459 3.456

3 F 29 L 1085 l 0.569 0.485 0.466 0.427 0.451
r 0.485 0.447 0.449 0.411 0.425
Min �2.770 �2.448 �2.249 �2.246 �2.218
Max �5.0� 10�5 2.176 2.279 1.962 2.357

4 M 24 L 1097 l 0.811 0.744 0.731 0.593 0.606
r 0.603 0.564 0.557 0.543 0.552
Min �3.464 �2.573 �2.739 �2.442 �2.305
Max �3.0� 10�5 3.464 3.464 3.464 3.464

5 F 21 R 1145 l 0.698 0.563 0.524 0.506 0.476
r 0.552 0.508 0.485 0.491 0.470
Min �3.461 �2.242 �2.445 �2.441 �2.544
Max �5.0� 10�5 3.462 3.459 3.463 3.463

6 F 21 R 1107 l 0.602 0.429 0.451 0.423 0.425
r 0.517 0.420 0.438 0.426 0.418
Min �2.616 �2.122 �2.135 �2.558 �2.436
Max �6.0� 10�5 2.021 2.265 2.306 2.323

7 M 30 R 1106 l 0.709 0.461 0.492 0.433 0.471
r 0.529 0.465 0.481 0.459 0.464
Min �2.723 �2.164 �2.365 �2.030 �2.226
Max �6.0� 10�5 2.274 2.131 2.254 2.204

8 M 32 L 1132 l 0.704 0.647 0.640 0.585 0.603
r 0.508 0.493 0.474 0.488 0.519
Min �2.473 �2.604 �2.451 �2.230 �2.506
Max �4.0� 10�5 2.200 2.353 2.668 2.602

9 M 27 L 1065 l 0.691 0.609 0.583 0.532 0.557
r 0.524 0.476 0.477 0.487 0.467
Min �3.451 �2.309 �2.899 �2.248 �2.094
Max �9.0� 10�5 3.463 3.319 3.455 3.428

10 F 21 R 1117 l 0.821 0.515 0.528 0.470 0.495
r 0.494 0.439 0.447 0.433 0.436
Min �2.608 �2.315 �2.676 �2.008 �2.031
Max �1.1� 10�4 2.460 2.048 2.199 2.067

11 F 39 L 1759 l 0.437 0.408 0.398 0.356 0.351
r 0.429 0.397 0.397 0.372 0.363
Min �2.003 �2.361 �2.229 �2.227 �2.084
Max 2.376 1.932 1.997 2.011 1.969

Fitting error for all 11 specimens l 0.643 0.544 0.532 0.484 0.493
r 0.521 0.481 0.479 0.465 0.466
Min �3.463 �2.616 �2.899 �2.604 �2.544
Max 2.376 3.464 3.464 3.463 3.464
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As for the shape parameters, the mean surface dimensions were
similar for the sphere, ellipsoid, and superellipsoid (largest differ-
ence is between superellipsoid and sphere: 0.299 mm), but were
slightly larger for the ovoid and superovoid (largest difference is
between superovoid and sphere: 1.149 mm). The dimensions also
reveal that ellipsoids, superellipsoid, ovoid, and superovoid were more
eccentric along the local x axis since the a value is greater than b and
c for all these shapes. Interestingly, the exponent values of superellip-
soid and superovoid were very close to 2.0 where the highest c value,
for all 11 subjects, was 2.179, hence, both super shapes were very sim-
ilar to their quadratic counterparts. As for the centroid positions and
surface orientations, all shapes showed very similar values.

4 Discussion

MacConaill’s mathematical and clinical work on synovial joint
morphology indicates that the macroscopic features of spheroidal

articular surfaces closely follow an ovoidal form [17–19].
Although his classification has been known for over 40 years,
many computer-aided orthopedic surgery methodologies still
remain faithful to the spherical classification. On the other hand,
several studies have considered nonspherical shapes but none
were truly ovoidal [4–15]. Generic ovoidal shapes could contrib-
ute significantly to the anatomical description of human joints and
to design improved artificial joints.

In this work, MacConaill’s morphological classification is com-
putationally tested. To this end, a set of 11 femoral head point
clouds underwent a surface fitting procedure which considers
spherical, ellipsoidal, superellipsoidal, ovoidal, and superovoidal
shapes as geometric models that describe joint morphology. The
developed surface fitting framework has the following capabil-
ities: (i) is easily extendable to other (implicit) shape models; (ii)
it accurately measures subject-specific morphofunctional parame-
ters, such as articular centers, functional axes, and mechanical

Table 3 Shape parameters for each geometric primitive used to describe the femoral head. The values of a, b, c, t1, t2, and t3 are in
millimeter. Angular parameters are in radians (S—sphere; E—ellipsoid; SE—superellipsoid; O—ovoid; and SO—superovoid).

S E SE O SO

a l 6 r 32.11 6 4.66 32.37 6 4.58 32.41 6 4.57 33.10 6 4.29 33.26 6 4.06
Range 21.62–37.22 21.36–37.28 21.38–37.54 23.33–38.15 23.33–37.38

b l 6 r — 31.89 6 4.88 31.67 6 4.75 32.46 6 4.69 33.03 6 4.79
Range 21.52–37.73 21.65–36.74 22.22–37.98 23.24–38.11

c l 6 r — 31.79 6 4.32 31.62 6 4.40 31.79 6 4.52 31.76 6 4.36
Range 21.88–36.76 21.01–36.29 20.93–36.61 21.39–36.70

c1 l 6 r — — 2.05 6 0.06 — 2.03 6 0.04
Range 2.00–2.18 2.00–2.09

c2 l 6 r — — 2.03 6 0.04 — 2.02 6 0.03
Range 2.00–2.12 2.00–2.09

c3 l 6 r — — 2.04 6 0.07 — 2.01 6 0.03
Range 2.00–2.17 2.00–2.09

c0x l 6 r — — — 0.97 6 0.02 0.96 6 0.04
Range 0.93–0.99 0.87–0.99

c1x l 6 r — — — 0.03 6 0.03 0.03 6 0.03
Range 2.48� 10�5–0.08 5.23� 10�5–0.09

c2x l 6 r — — — 0.01 6 0.05 0.01 6 0.06
Range �0.07 to 0.09 �0.09 to 0.09

c3x l 6 r — — — 0.04 6 0.06 0.04 6 0.05
Range �0.08 to 0.09 �0.06 to 0.09

c0y l 6 r — — — 0.98 6 0.01 0.96 6 0.02
Range 0.97–0.99 0.92–0.99

c1y l 6 r — — — 0.01 6 0.02 0.02 6 0.01
Range 9.95� 10�6–0.05 0.00–0.04

c2y l 6 r — — — 0.02 6 0.03 0.02 6 0.03
Range �0.04 to 0.06 �0.06 to 0.06

c3y l 6 r — — — 0.018 6 0.06 0.04 6 0.05
Range �0.07 to 0.09 �0.03 to 0.09

t1 l 6 r 224.72 6 77.64 224.87 6 77.53 224.89 6 77.61 224.91 6 77.58 224.85 6 77.54
Range 96.41–324.32 96.35–324.87 96.29–324.76 96.29–324.29 96.33–324.16

t2 l 6 r 0.29 6 58.00 0.38 6 58.09 0.22 6 58.03 0.24 6 57.87 0.30 6 57.86
Range �168.14 to 41.57 �168.21 to 1.75 �168.11 to 41.99 �167.73 to 41.56 �167.62 to 41.61

t3 l 6 r 16.64 6 40.57 16.81 6 40.54 16.77 6 40.56 16.74 6 40.70 16.61 6 40.58
Range �11.50 to 37.16 �11.39 to 37.19 �11.38 to 37.22 �11.16 to 37.68 �11.35 to 137.12

/ l 6 r — 10.59 6 3.42 10.02 6 4.12 9.81 6 4.75 10.02 6 5.15
Range 5.28–15.54 2.51–14.94 �0.67 to 15.51 �1.74 to 16.37

# l 6 r — 10.581 6 4.20 10.85 6 3.42 10.50 6 4.39 10.59 6 4.37
Range 3.17–16.46 6.69–16.16 2.86–16.78 3.25–17.49

w l 6 r — 10.65 6 3.63 10.37 6 3.77 9.95 6 5.12 9.68 6 5.61
Range 6.79–16.36 6.26–15.63 �1.65 to 16.49 �3.47 to 16.09
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axes; and (iii) it performs a best fit shape comparison based
entirely on signed Euclidean distances between points and fitted
surface rather than pseudo-Euclidean distances.

The surface fitting error results (Table 2) indicate that the femo-
ral head is better described by ovoid shapes which have the lowest
surface fitting errors, along with the lowest standard deviation,
followed by the superovoid, superellipsoid, ellipsoid, and finally
the sphere that presents the highest surface fitting error. Interest-
ingly, the largest surface fitting error was between sphere and
ovoid shapes, not between sphere and superovoid as initially
expected. In particular, the fitting error of the ovoid was 24.75%
less than the fitting error of the sphere. Thus, the ovoid describes
the shape of the femoral head best, with the superovoidal shapes
with exponents slightly greater than 2.0 having a poorer fit.

The main novelty of this work consists of introducing shapes
with irrational-degree (i.e., ci> 2.0) and ovoidal features into
morphological studies of the articular surface of the femoral head.
Such shapes provide a higher degree of geometric modeling free-
dom relative to a sphere (i.e., a wider range of curvatures from
round to squared forms and axial asymmetry). The results
show that the ovoidal asymmetry contributes to the increased
goodness-of-fit compared to nonovoidal shapes, thus corroborat-
ing MacConaill’s classification.

One limitation of this work is that the approach was only tested
on 11 data sets. A greater number of data sets would provide more
statistical significance. Even so, the results validate MacConaill’s
observations and points toward new research paths on morpho-
functional studies of other spheroidal articular surfaces, such as
the acetabular cavity, humeral head, and glenoid cavity. Since this
work introduces ovoidal shapes to represent the morphology of
the femoral head, it is necessary to perform additional surface fit-
ting tests with other ovoid shapes, such as the tapered (super)ellip-
soid [20], in order to determine if there are more suitable shapes
besides the ones considered. Another limitation is related to the
computational framework, as the various image processing, mesh
adjustment, and surface fitting operations should be integrated
into a single stand-alone software if such computational tool is to
be used in a clinical setting. In addition, the computational frame-
work could be more efficient with the addition of parallel process-
ing, as several of the surface fitting algorithms are performed in
parallel.

The surface fitting framework and consequent findings have
applications in the development of novel computer-aided orthope-
dic tools that consider ovoidal shapes in the diagnosis and treat-
ment of hip joint disorders. In particular, the high precision
control offered by the framework outputs geometric measure-
ments for personalized anatomy, allowing for the fabrication of
endoprosthesis with ovoidal shapes with subject-specific dimen-
sions and curvatures.
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Nomenclature

a ¼ shape coefficient along the xl direction
b ¼ shape coefficient along the yl direction
c ¼ shape coefficient along the zl direction

c0x ¼ ovoidal shape coefficient along the xl direction
c1x ¼ ovoidal shape coefficient along the xl direction
c2x ¼ ovoidal shape coefficient along the xl direction
c3x ¼ ovoidal shape coefficient along the xl direction
c0y ¼ ovoidal shape coefficient along the yl direction

c1y ¼ ovoidal shape coefficient along the yl direction
c2y ¼ ovoidal shape coefficient along the yl direction
c3y ¼ ovoidal shape coefficient along the yl direction
D ¼ surface scaling matrix

dPQ ¼ distance vector between points P and Q
EOF ¼ error-of-fit objective function

f ¼ residual of error-of-fit objective function
FSO ¼ implicit surface expression for a superellipsoid
FSQ ¼ implicit surface expression for a superovoid

i ¼ index for points
Ik ¼ real-valued interval of the kth surface parameter
k ¼ index for surface parameter
l ¼ lower bound column vector

M ¼ number of geometric modeling degrees-of-freedom
N ¼ total number of points
P ¼ set of N points in Cartesian space
R ¼ surface orientation matrix

SED ¼ signed Euclidean distance objective function
t ¼ surface translation vector
u ¼ upper bound column vector
x ¼ position vector of a point

xg ¼ position vector of a point in global coordinates
xl ¼ local coordinates of a point in space along the x-direction
xl ¼ position vector of a point in local coordinates
xP ¼ position vector of given point from point cloud
xQ ¼ position vector of surface point with minimum distance
yl ¼ local coordinates of a point in space along the y-direction
zl ¼ local coordinates of a point in space along the z-direction
c1 ¼ roundness exponent along the xl direction
c2 ¼ roundness exponent along the yl direction
c3 ¼ roundness exponent along the zl direction
e ¼ tolerance scalar
e ¼ tolerance vector
k ¼ vector of surface geometric parameters

k* ¼ vector of geometric parameters of the optimally fitted
surface

t ¼ surface orientation angle with respect to the x-direction
u ¼ surface orientation angle with respect to the y-direction
w ¼ surface orientation angle with respect to the z-direction
X ¼ admissible set or surface parameter space

||.||2 ¼ Euclidean norm
01x3 ¼ zero row vector
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